
1

Modelica Buildings Library

Michael Wetter and Thierry S. Nouidui  
Simulation Research Group

July 7, 2015

Overview

2

Intended use

Users
• Equipment manufacturers, design firms, academia.
• Engine for “Spawn of EnergyPlus” HVAC and controls
• Model-based design process (e.g., FLEXLAB).
• FDD algorithms (ongoing for DoD).
• Simulation engine for http://www.learnhvac.org and http://www.learngreenbuildings.org  

License
• All development is open-source under Modelica 2.0 license (similar than BSD).

3

http://www.learnhvac.org
http://www.learngreenbuildings.org

Objectives

For Spawn of EnergyPlus
• modular models for controls and HVAC

For building designers and manufacturers
• open-source, free library of component and system models
• collection of case studies and demonstrations

For researchers and manufacturers
• library and tools for rapid virtual prototyping and model-based

design

For simulation tool developers
• collaborative environment
• software components with liberal open-source license, vetted

by experts from around the world

4
User guide with best practice.

Scope

5

Air-based HVAC Hydronic heating Chiller plants

Natural ventilation,
multizone air exchange,
contaminant transport

Room heat transfer,
incl. window (TARCOG)

Solar collectors

Embedded Python

Electrical systemsRoom air flow

500+ validated component models.
Free, open-source.
http://simulationresearch.lbl.gov/modelica

FLEXLAB

http://simulationresearch.lbl.gov/modelica

Example application

6

4 IMPLEMENTATION 10

we implemented

Dh , Q̇ f(ṁd, ṁ), (2)

with

f(d, x) ,

8
<

:
p(d, x), for x 2 [�d, d],

1/x, otherwise,
(3)

where f : R ⇥ R ! R is a twice continuously differentiable function
that is bounded on compact sets. We constructed the function p : R ⇥
R ! R in such a way that it satisfies

p(d, x) = �p(d, �x), (4a)

p(d, d) = 1/d, (4b)

p0(d, d) = �1/d2, (4c)

p0(d, 0) 6= 0, (4d)

p00(d, d) = �2/d3, (4e)

where p0(·, ·) and p00(·, ·) denote the first and second order par-
tial derivatives with respect to the second argument. The condition
p0(d, 0) 6= 0 has been selected to avoid that the first derivative van-
ishes at the origin, because a Newton solver that solves p(d, x) = 0
for x may compute the sequence xn+1 = xn � p(d, xn)/p0(d, xn).

�1 0 1

�1

0

1 d/x

d/x

d p(d, x)

x/d

d
f
(d

,x
)

Figure 1: Plot of d f(d, x).

The function that we selected and that satisfies (4) is

p(d, x) , x
d2 + x

����
2
d3 x � 3

d5 x3 +
1
d7 x5

���� . (5)

Figure 1 shows the graph of this function. The term x/d2 is used to
ensure that the first derivative is non-zero around a neighborhood of
x = 0, and therefore by the Implicit Function Theorem, there exists
in a neighborhood of the origin an inverse function p�1(d, ·) that is
differentiable.41 41 Polak, E. (1997). Optimization, Algo-

rithms and Consistent Approximations,
Volume 124 of Applied Mathematical
Sciences. Springer Verlag

Note that in (2), for ṁ(t) 2 (�ṁd, ṁd) \ {0}, energy is not con-
served. Therefore, ṁd should be chosen small. However, ṁd should
not be too small compared to the design mass flow rate, as this will
cause f(ṁd, ṁ) to be large in magnitude near ṁ ⇡ ±ṁd, which may
lead to problems for numerical solvers. The default setting in the
Buildings library is ṁd = 10�7 ṁ0, where ṁ0 is the design mass flow
rate. At this low mass flow rate, the impact on the energy consump-
tion is negligible.

To assist component model developers in the regularization of
these functions, the package Buildings.Utilities.Math provides
differentiable approximating functions for many formulations.42 42 Note that Modelica simulation en-

vironments can in general properly
handle non-differentiabilities. How-
ever, a numerically sound treatment
requires an event iteration that is com-
putationally costly. When formulating
equations for physical phenomena, we
therefore replaced non-differentiable
equations with approximations that are
continuously differentiable.

Legend:
Library developer
Component developer
End user

Main modeling assumptions

Media 
 
HVAC equipment  
 
 
 
 
Flow resistances  
 
 
Room model 
 
 
 
Electrical systems  
 

7

Can track moisture (X) and contaminants (C).  
 
Most equipment based on performance curve, or based on
nominal conditions and similarity laws. 
Refrigerant is not modeled. 
Most equipment optional steady-state or 1st order transient.  
 
Based on m_flow_nominal and dp_nominal plus similarity law. 
Optional flag to linearize or to set dp=0.  
 
Any number of constructions are possible. 
Layer-by-layer window model (similar to Window 6). 
Optional flag to linearize radiation and/or convection. 
 
DC. 
AC 1-phase and 3-phase (dq, dq0).  
Quasi-stationary or dynamic phase angle (but not frequency).

Special modeling approach

All equations of physical systems are once
continuously differentiable.  
 
 
 
Special treatments to avoid numerical problems if
m_flow is in neighborhood around 0.  
 
 
 
 
 
 
Fan/pump model for which we can prove existence of
unique solution. 
See paper at Building Simulation 2013.

8

4 IMPLEMENTATION 10

we implemented

Dh , Q̇ f(ṁd, ṁ), (2)

with

f(d, x) ,

8
<

:
p(d, x), for x 2 [�d, d],

1/x, otherwise,
(3)

where f : R ⇥ R ! R is a twice continuously differentiable function
that is bounded on compact sets. We constructed the function p : R ⇥
R ! R in such a way that it satisfies

p(d, x) = �p(d, �x), (4a)

p(d, d) = 1/d, (4b)

p0(d, d) = �1/d2, (4c)

p0(d, 0) 6= 0, (4d)

p00(d, d) = �2/d3, (4e)

where p0(·, ·) and p00(·, ·) denote the first and second order par-
tial derivatives with respect to the second argument. The condition
p0(d, 0) 6= 0 has been selected to avoid that the first derivative van-
ishes at the origin, because a Newton solver that solves p(d, x) = 0
for x may compute the sequence xn+1 = xn � p(d, xn)/p0(d, xn).

�1 0 1

�1

0

1 d/x

d/x

d p(d, x)

x/d

d
f
(d

,x
)

Figure 1: Plot of d f(d, x).

The function that we selected and that satisfies (4) is

p(d, x) , x
d2 + x

����
2
d3 x � 3

d5 x3 +
1
d7 x5

���� . (5)

Figure 1 shows the graph of this function. The term x/d2 is used to
ensure that the first derivative is non-zero around a neighborhood of
x = 0, and therefore by the Implicit Function Theorem, there exists
in a neighborhood of the origin an inverse function p�1(d, ·) that is
differentiable.41 41 Polak, E. (1997). Optimization, Algo-

rithms and Consistent Approximations,
Volume 124 of Applied Mathematical
Sciences. Springer Verlag

Note that in (2), for ṁ(t) 2 (�ṁd, ṁd) \ {0}, energy is not con-
served. Therefore, ṁd should be chosen small. However, ṁd should
not be too small compared to the design mass flow rate, as this will
cause f(ṁd, ṁ) to be large in magnitude near ṁ ⇡ ±ṁd, which may
lead to problems for numerical solvers. The default setting in the
Buildings library is ṁd = 10�7 ṁ0, where ṁ0 is the design mass flow
rate. At this low mass flow rate, the impact on the energy consump-
tion is negligible.

To assist component model developers in the regularization of
these functions, the package Buildings.Utilities.Math provides
differentiable approximating functions for many formulations.42 42 Note that Modelica simulation en-

vironments can in general properly
handle non-differentiabilities. How-
ever, a numerically sound treatment
requires an event iteration that is com-
putationally costly. When formulating
equations for physical phenomena, we
therefore replaced non-differentiable
equations with approximations that are
continuously differentiable.

�h =
Q̇

ṁ
⇡ Q̇�(ṁ�, ṁ)

max(r(t), 0.001/N0). However, this introduces
a non-differentiability at r(t) = 0.001/N0. Moreover,
it causes �p(r(t),

˙

V (t)) to be non-zero even if
˙

V (t) = 0 and r(t) = 0. Hence, the fan cannot be
switched off completely, and volume flow occurs even
if the HVAC system is off. This may introduce outside
air when heaters are off, thereby causing subfreezing
temperatures in heat exchangers which in turn can
cause the simulation to stop. The third point has
been shown to cause two solutions to exist for certain
configurations of flow networks and fan curves. This
caused non-physical results and divergence of the
solver.

Implementation in Buildings Library 0.12
We will now explain how the first two problems were
avoided in the Buildings library version 0.12. We will
then explain why the new implementation was also
not robust. Finally, after this section, we will explain
how we reimplemented the fan model to circumvent
all three problems.

In the Buildings library version 0.12, the first two
problems are avoided by reformulating (3) as

�p(r(t),

˙

V (t)) = c1 r(t)
2
+ c2 r(t)

˙

V (t), (4a)
�p(r(t),

˙

V (t)) = c1 r(t)
2
+ c2 r(t)

˙

V (t)

+c3
˙

V

2
(t), (4b)

�p(r(t),

˙

V (t)) =

nX

i=1

c

i

r(t)

n�i

˙

V

i�1
(t),

for n � 4. (4c)

This implementation has shown to be numerically
problematic in a large system model in which the fan
curve was modeled as a linear function.2 The reason
was that Dymola selected ˙

V (t) as an iteration vari-
able, and computing r(t) and �p(r(t),

˙

V (t)) required
an iterative solution, i.e., they were approximated us-
ing some r

⇤
(✏, t) and some �p

⇤
(✏, t). The governing

equation was

˙

V

⇤
(✏, t) =

�p

⇤
(✏, r

⇤
(✏, t),

˙

V

⇤
(✏, t)) � r

⇤
(✏, t)

2
c1

r

⇤
(✏, t) c2

⇡ �p

⇤
(✏, r

⇤
(✏, t),

˙

V

⇤
(✏, t))

r

⇤
(✏, t) c2

. (5)

Thus, computing ˙

V

⇤
(✏, t) required dividing numerical

noise by numerical noise.
Moreover, since, in the system model, the fans were
connected as shown in Figure 2, the fluid volumes
of two fan models were coupled. Due to the model
parameterization, multiple volumes were connected
without a flow resistance in between, forming a se-
quence of connected volumes. Within this sequence,
the mass flow rate became oscillatory and unstable, as

2This problem was observed in https://corbu.lbl.

gov/svn/bie/branches/mwetter/dev-zeroFlow/

bie/modelica/Buildings, revision 2721.

600 1,000 1,600

�1

�0.5

0

0.5

1

time in seconds

ṁ
(
t
)
/
ṁ

0

Figure 3: Instability of ṁ(t)/ṁ0 for the fan inlet mass

flow rate at location (a) in Figure 2.

shown in Figure 3, because at r = 0 (and �p = 0),
any value of ˙

V (t) satisfied the governing equation (4a)
for the fan in the lower flow path. That is, there were
an infinite number of solutions to (4a)! Not surpris-
ingly, this eventually led, for the fan configuration
shown in Figure 2, to the oscillatory behavior shown
in Figure 3. Consequently, the solver stalled as it was
required to make very small time steps to control the
integration error of the conservation equations of the
volumes that participated in the mass exchange shown
in Figure 3.

We note that this oscillatory behavior is avoided in
CONTAM 3.0 by replacing the fan model with an ori-
fice model if the control signal satisfies r(t)  � for
some 0 < � < 1. We did not use this approach as
it would yield a hybrid model. Switching from one
model to another leads to a state event that can increase
the simulation time. Furthermore, if r(t) is the output
of a controller whose input depends on the fan volume
flow rate, then the following problems can occur: For
an algebraic hybrid model, there may not be a solution.
For a dynamic hybrid model, the dynamics can intro-
duce oscillatory behavior (chattering) which in turn
can cause very slow progress of the time integration.
As an example, consider the contaminant problem be-
low that describes a volume with fresh air supply, con-
stant contaminant source and feedback control on the
fresh air supply flow rate. Let

V

dC(t)

dt

=

(
˙

C

s

, if u(t) < 0.2,

˙

C

s

� ˙

V C(t)u(t), otherwise,
(6a)

C(0) = 0, (6b)
u(t) = K

p

C(t), (6c)

where V = 1m

3 is the control volume, C(·)
is the contaminant concentration in kg/m

3, ˙

C

s

=

0.999 kg/s is a contaminant source, K
p

= 0.2m

3
/kg

is a control gain, ˙

V = 5m

3
/s is the fan volume flow

rate and u(·) is the fan control input. By (6a), the
fan only operates if the control input signal satisfies
u(t) � 0.2. The control law has no hysteresis.
When simulated in Dymola 2013 FD01, which has
event detection, and the DASSL solver is used, which
is an adaptive time step solver, C(t) increases to
1 kg/m

3 at t = 1 s, and then the control u(t) chatters,
causing the simulation to make very slow progress.

http://simulationresearch.lbl.gov/wetter/download/2013-IBPSA-Wetter.pdf

Validation

Room model: ANSI/ASHRAE 140.

Window model: Window 6 plus full-scale experiments.

Comparative model validation for

- Window model (Window 6)

- Multizone air exchange (CONTAM)

- DX coils (EnergyPlus)

- Solar collectors (TRNSYS)

Where possible, all components were verified with analytical solutions.

500+ regression tests compare results to reference results as part of development, 
see https://github.com/lbl-srg/modelica-buildings/wiki/Unit-Tests

9

https://github.com/lbl-srg/modelica-buildings/wiki/Unit-Tests

Documentation and distribution

Documentation
• General user guide (getting started, best practice, 

developer instructions, ...).
• 14 user guides for individual packages.
• 2 tutorials with step-by-step instructions.
• All models contain “info” section.
• Small test models for all classes,  

large test cases for “smoke tests,” 
and various validation cases.

Distribution
• Main site 

http://simulationresearch.lbl.gov/modelica
• Development site with version control, wiki and issue tracker:  

https://github.com/lbl-srg/modelica-buildings

10

http://simulationresearch.lbl.gov/modelica/userGuide/
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_UsersGuide.html#Buildings.UsersGuide
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Examples_Tutorial.html
http://simulationresearch.lbl.gov/modelica
https://github.com/lbl-srg/modelica-buildings

Collaborative development within IEA  
EBC Annex 60

Goal of activity 1.1 (library development):
Develop and distribute a well documented, vetted and validated open-source Modelica library
that serves as the core of future building simulation programs.

11

Annex60'

Controls'
Fluid'
Media'
U5li5es'

Base'Classes'

AixLib'

House'
HVAC'
Ci5es'

RWTH'Aachen'

BuildingSystems'

HVAC'
Solar''

Building'

UdK'Berlin'

Buildings'

HVAC'
Controls'
Building'

LBNL'USA'

OpenIDEAS'

District'
Building'
HVAC'

KU'Leuven'

…' …' …' …'

Development at https://github.com/iea-annex60/modelica-annex60

https://github.com/iea-annex60/modelica-annex60

Example Applications

12

AC grid

Virtual prototyping through graphical modeling of  
multi-physics systems

13

DC renewable plantDC renewable plant AC grid

Cooling plantFeedback control

big clockwise circulation in the center of the room due
to the strong inertial force. Some small circulations
occur near the wall corners due to the wall influence.
The temperature distribution is highly non-uniform due
to the interaction of the buoyancy force and inertial
force.
Figure 10 shows the data obtained from Modelica. The
air temperature and velocity at the room center (0.5 m,
0.5 m, 0.5 m) are computed by FFD and sent to
Modelica as sensor data. The results now show, that the
temperature and velocity at the room center steadily
increases due to the floor heating and ventilation until
the flow in the space has fully developed at around 40
seconds. These values oscillate due to the unsteady
flow.

Figure 9 Velocity vectors and temperature contour of
the mixed convection on a cross-section at y = 0.5m

computed by FFD
Modelica also computes the heat flow rates at the heat
port of the heat sources connected to the walls. The heat
flow rate through the port of the heat source connected
to the floor is negative because heat is leaving the heat
port. The highest heat flow rate appears at t = 0 seconds
when the largest temperature difference occurs. The
heat flow rates through the ports of the heat sources
connected to the west and east walls are positive since
their temperatures are lower than the room air
temperature.

CONCLUSION
We implemented and validated a coupled simulation
between FFD and the Modelica Buildings library. The
results show that the coupled simulations can simulate
the dynamic interaction between the indoor
environment and the building envelope faster than real
time. Performing the FFD simulation in parallel using

graphics processing units or multicore CPUs could
further reduce the simulation time (Zuo et al., 2010a),
although we have not yet implemented this code for our
coupled simulation. To further evaluate the
performance of the coupled simulation, the next step is
to conduct a case study that includes feedback loop
control between the room air and the HVAC system.

Figure 10 Temperature and air velocity at the room
center, heat flow rates through the heat ports of the
heat sources that connect to the walls in the mixed

convection

NOMENCLATURE
g Acceleration due to gravity
ሶ݉ Mass flow rate
 തതതത Averaged Nusselt numberݑܰ
ሶܳ Heat flow rate
ሶݍ Heat flux
Ra Rayleigh number
ܵ Surface area
ܶ Temperature
 Time ݐ
 Velocity ݑ
V Volume
β Thermal expansion coefficient
ν Kinematic viscosity
Subscripts:
in Inlet
n Normal to the surface
out Outlet
sur Solid surface
sou Source

ACKNOWLEDGMENTS
This research was supported by the Assistant Secretary
for Energy Efficiency and Renewable Energy, Office of

9

10

11

12

13

14

15

T
[◦
C
]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

V
[m

/s
]

0 30 60 90 120 150 180
Simulation T ime (s)

−250

−200

−150

−100

−50

0

50

Q
su

r
[W

]

Floor

East Surface

West Surface

© 2014 ASHRAE (www.ashrae.org). For personal use only. Reproduction, distribution, or transmission
in either print or digital form is not permitted without ASHRAE’s prior written permission.

62

Temperature
stratification
based on CFD

Modeling of hydronic systems

14

ordinary differential
equation

algebraic equations

state graph

algorithmic code

state events

spatially discretized PDE

acausal schematic diagram

block-diagram

The above model is composed hierarchically, partially through automatic generation, of 1700 component
models.

Fault detection based on design models under consideration of
uncertainties

15

boiler

Q=3000

u Q_flow

outletTemp

T

TSet

offset=0

controller

PIPI

heaDyn

Q=3000

u Q_flow

senTem2

T

con2

PIPI

m

sou

inletTemp

T

sin

file:///Users/mwetter/proj/iea/a60/iea-annex-60-admin/outreach...

1 of 1 12/3/14, 7:25 AM

Library of models

FMUModel compliant with
Functional Mockup
Interface standard

Design phase

Fault detection
and diagnosis

F(x',x,y,p)=0

Sensor & energy
measurements

Fix faults

Estimation of fault
parameters in real-time

Notify faults

Simulation model

SIMULATION PROGRAM / PLATFORM
Experts and
designers

Construction

Maintenance and
operators

DESIGN

OPERATION

FDD applied
to district chilled
water plant

16

Campus 
20 buildings

Lejeune 
3 chillers

Rickover  
3 chillers

CHWS

CHWR

CHWS

CHWR

FDD applied to district chilled water plant

17

User-interface

Underlying analysis
model

Structure of the library

18

Organization of the main packages

19

Buildings
 Airflow
 Multizone
 BoundaryConditions
 SolarGeometry
 SolarIrradiation
 SkyTemperature
 WeatherData
 Controls
 Continuous
 DemandResponse
 Discrete
 Predictors
 SetPoints
 Electrical
 {AC, DC}
 Fluid
 Actuators
 Boilers
 Chillers
 FixedResistances
 HeatExchangers
 … 

  
 HeatTransfer
 Conduction
 Convection
 Radiosity
 Windows
 Rooms
 CFD
 MixedAir
 Utilities
 Comfort
 Math
 Psychrometrics

 Resources
 C-Sources
 Data
 Documentation
 Include
 Library
 ReferenceResults
 Scripts
 bin
 src
 weatherdata

Organization of individual packages

Packages are typically structured as shown on
the right.

To add a new class, look first at Interfaces
and BaseClasses.

You probably will never implement a component
without extending a base class, such as from
Buildings.Fluid.Interfaces

20

Tutorial
UsersGuide

Any other classes (models,
functions etc.)

Data
Types
Examples
Validation
Benchmarks
Experimental
Interfaces
BaseClasses
Internal
Obsolete

Best practice and modeling
hints

21

Building large system models

How do you build and debug a large system model?

1. Split the model into smaller models.

2. Test the smaller models for well known conditions.

3. Add smaller models to unit tests.

For example, see Chiller Plant

Each small models contains a simple unit test.

22

http://simulationresearch.lbl.gov/modelica/releases/v2.0.0/help/Buildings_Examples_ChillerPlant_BaseClasses_Controls.html#Buildings.Examples.ChillerPlant.BaseClasses.Controls

Use small unit tests, as in

23

Chiller plant
base classes

Pumps

http://simulationresearch.lbl.gov/modelica/releases/v2.0.0/help/Buildings_Examples_ChillerPlant_BaseClasses_Controls_Examples.html#Buildings.Examples.ChillerPlant.BaseClasses.Controls.Examples
http://simulationresearch.lbl.gov/modelica/releases/v2.0.0/help/Buildings_Fluid_Movers_Validation.html#Buildings.Fluid.Movers.Validation.FlowControlled_dp

Propagate common parameters

24

Pump pum(m_flow_nominal=0.1) "Pump";
TemperatureSensor sen(m_flow_nominal=0.1) "Sensor";

Modelica.SIunits.MassFlowRate m_flow_nominal = 0.1
 "Nominal mass flow rate";
Pump pum(final m_flow_nominal=m_flow_nominal) "Pump";
TemperatureSensor sen(final m_flow_nominal=m_flow_nominal) "Sensor";

Modelica.SIunits.HeatFlowRate QHea_nominal = 3000
 "Nominal heating power";
Modelica.SIunits.TemperatureDifference dT = 10
 "Nominal temperature difference";
Modelica.SIunits.MassFlowRate m_flow_nominal = QHea_nominal/dT/4200
 "Nominal mass flow rate";
...

Don't assign values to the same parameters

Instead, propagate parameters

Assignments can include computations, such as

Always define the media at the top-level

25

Top-level system-model

Propagate medium to instance of model

Note: For arrays of parameters, use the each keyword, as in

replaceable package Medium = Buildings.Media.Air
 "Medium model";

TemperatureSensor sen(
 redeclare final package Medium = Medium,
 final m_flow_nominal=m_flow_nominal) "Sensor";

TemperatureSensor sen[2](
 each final m_flow_nominal=m_flow_nominal)
"Sensor";

Exercise 1: Propagate parameters and media

Common parameters are design flow rates for

• air,

• water and

• condenser loop.

Common media are air and water for chiller and condenser
loop.

Find where common parameters are used and propagated
in
Buildings.Examples.ChillerPlant.DataCenterDiscreteTimeCon
trol

Find where air mass flow rate in air/water heater exchanger
is propagated.

(Hint: In Dymola, you can expand all inherited classes.)

26

http://simulationresearch.lbl.gov/modelica/releases/v2.0.0/help/Buildings_Examples_ChillerPlant.html#Buildings.Examples.ChillerPlant.DataCenterDiscreteTimeControl

Exercise 2: Modeling of a simple thermofluid flow system

How do you implement a source and boundary condition with a tank in between to create the
model below:

27

Exercise 2: Modeling of a simple thermofluid flow system

1. Make instances using models from Buildings.Fluid.Sources and
Buildings.Fluid.MixingVolumes.

2. Assign the parameters.

3. Check and simulate the model.

28

Further resources

Tutorials
• Buildings.Examples.Tutorial

User guides
• User guides for specific packages of models.
• User guide with general information.

29

http://simulationresearch.lbl.gov/modelica/releases/v2.0.0/help/Buildings_Examples_Tutorial.html#Buildings.Examples.Tutorial
http://simulationresearch.lbl.gov/modelica/releases/v2.0.0/help/Buildings_UsersGuide.html#Buildings.UsersGuide
http://simulationresearch.lbl.gov/modelica/userGuide/

Setting a reference pressure

30

Underdetermined model as no pressure is assigned

Well defined model, but additional state for pressure as
reservoir p/p0=V0/p

Most efficient model as reservoir p is constant

Modeling of fluid junctions

31

In the model on the right, mixing
takes place in the fluid port B
because the boiler, port A and
port C all connect to port B.

Avoid oscillations of sensor signal

32

Correct use because

Incorrect, as sensor output oscillates if
mass flow rate changes sign.
This happens for example if the mass
flow rate is near zero and approximated
by a solver.

See also User Guide.

⌧
dT

dt
=

|ṁ|
ṁ0

(✓ � T)

http://simulationresearch.lbl.gov/modelica/userGuide/bestPractice.html#use-of-sensors-in-fluid-flow-systems

Avoid events

33

This triggers events:

T_in = if port_a.m_flow > 0 then port_a.T else port_b.T;

Avoid events using regularization:
T = Modelica.Fluid.Utilities.regStep(
 x = port_a.m_flow,  
 y1 = T_a_inflow,  
 y2 = T_b_inflow,
 x_small = m_flow_nominal*1E-4);

See also User Guide.

http://simulationresearch.lbl.gov/modelica/userGuide/bestPractice.html#avoiding-events

Beware of oscillating control

34

If the control input oscillates around
zero, then this model stalls

What happens if this model is
simulated with an adaptive time
step?

model Test
 Real x(start=0.1);
equation
 der(x) = if x > 0 then -1 else 1;
end Test;

Setting of nominal values is important for scaling of residuals

If pressure is around 1E5 Pa, set p(nominal=1E5).

In Dymola, nominal values will be used to scale the residuals, such as in dsmodel.c:

In Dymola, the local integration error is

ϵ ≤ trel |xi| + tabs

where the absolute tolerance is scaled with the nominal value as

tabs = trel |xnom
i|.

35

{ /* Non-linear system of equations to solve. */
 ...
const char*const varnames_[]={"floMac1.VMachine_flow",
 "floMac2.VMachine_flow"};
const double nominal_[]={0.001, 0.001};
...

Development

36

Overview

Main topics

• Coding style and conventions

• Requirements

• Organization of the library

• Adding a new model

• Adding regression tests

Further literature

• User Guide -> Development

• Style guide

• Coding convention

37

http://simulationresearch.lbl.gov/modelica/userGuide/development.html
https://github.com/lbl-srg/modelica-buildings/wiki/Style-Guide
http://www.apple.com

Coding style and conventions

Based on Modelica Standard Library.

Most variables are 3 letter camel case to avoid too long names.

Code duplication avoided where practical.

Additional information at 
https://github.com/lbl-srg/modelica-buildings/wiki/Style-Guide and  
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_UsersGuide.html

38

https://github.com/lbl-srg/modelica-buildings/wiki/Style-Guide
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_UsersGuide.html

Requirements

Physical requirements

Mathematical requirements

39

https://github.com/lbl-srg/modelica-buildings/wiki/Functional-Requirements#physical-resolution
https://github.com/lbl-srg/modelica-buildings/wiki/Style-Guide#equations-and-algorithms

Organization of individual packages

Packages are typically structured as shown on
the right.

To add a new class, look first at Interfaces
and BaseClasses.

You probably will never implement a component
without extending a base class, such as from
Buildings.Fluid.Interfaces

40

Tutorial
UsersGuide

Any other classes (models,
functions etc.)

Data
Types
Examples
Validation
Benchmarks
Experimental
Interfaces
BaseClasses
Internal
Obsolete

Implementing new thermofluid flow devices

41

Buildings.Fluid.Interface provides base classes.

Buildings.Fluid.Interface.UsersGuide describes these classes.

Alternatively, simple models such as the models below may be used as a
starting point for implementing new models for thermofluid flow devices:

Buildings.Fluid.HeatExchangers.HeaterCooler_u
 For a device that adds heat to a fluid stream.

Buildings.Fluid.MassExchangers.Humidifier_u
 For a device that adds humidity to a fluid stream.

Buildings.Fluid.Chillers.Carnot
 For a device that exchanges heat between two fluid streams.

Buildings.Fluid.MassExchangers.ConstantEffectiveness
 For a device that exchanges heat and humidity between two fluid streams.

http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_Interfaces.html
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_Interfaces_UsersGuide.html
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_HeatExchangers.html#Buildings.Fluid.HeatExchangers.HeaterCooler_u
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_MassExchangers.html#Buildings.Fluid.MassExchangers.Humidifier_u
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_Chillers.html#Buildings.Fluid.Chillers.Carnot
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_MassExchangers.html#Buildings.Fluid.MassExchangers.ConstantEffectiveness

Adding a heat exchanger

42

See HeaterCooler_u

within Buildings.Fluid.HeatExchangers;

model HeaterCooler_u "Heater or cooler with prescribed heat flow rate"
 extends Buildings.Fluid.Interfaces.TwoPortHeatMassExchanger(
 redeclare final Buildings.Fluid.MixingVolumes.MixingVolume vol(
 prescribedHeatFlowRate=true));

 parameter Modelica.SIunits.HeatFlowRate Q_flow_nominal
 "Heat flow rate at u=1, positive for heating”;

 Modelica.Blocks.Interfaces.RealInput u "Control input";
 Modelica.Blocks.Interfaces.RealOutput Q_flow(unit="W")
 "Heat added to the fluid”;

protected
 Buildings.HeatTransfer.Sources.PrescribedHeatFlow preHea
 "Prescribed heat flow";
 Modelica.Blocks.Math.Gain gai(k=Q_flow_nominal) "Gain";

equation
 connect(u, gai.u); ... // other connect statements
 annotation (...); // documentation
end HeaterCooler_u;

http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_HeatExchangers.html#Buildings.Fluid.HeatExchangers.HeaterCooler_u

Add examples and validations to unit testing framework

43

1. Add validation and stress tests for different model
configurations.

 
 

2. Validate results and add main outputs to plot script.
These variables become part of the regression tests.  

3. Run 
 modelica-buildings/bin/
runUnitTests.py 

4. Update Buildings/package.mo release notes. 

5. Issue pull request on https://github.com/lbl-srg/
modelica-buildings. 

See Unit Test documentation.

http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_UsersGuide_ReleaseNotes.html
https://github.com/lbl-srg/modelica-buildings
https://github.com/lbl-srg/modelica-buildings/wiki/Unit-Tests

?

44

